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ABSTRACT 

A comparison is made of four different models for predicting the unsteady loading 
induced by a vortex passing close to an airfoil. 1) The first model approximates the vortex 
effect as a change in the airfoil angle of attack. 2) The second model is related to the first 
but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the 
vortex is computed and used. This is analogous to a lifting surface method. 3)The third 
model is to specify a branch cut discontinuity in the potential field. The vortex is modeled 
as a jump in potential across the branch cut, the edge of which represents the center of the 
vortex. 4) The fourth method models the vortex by expressing the potential as the sum of 
a known potential due to the vortex and an unknown perturbation due to the airfoil. The 
purpose of the current study is to investigate the four vortex models described above and 
to determine their relative merits and suitability for use in large three-dimensional codes. 

SYMBOLS 

chordwise metric 
cross derivative metric 
chord-normal metric 
vortex core radius normalized by c 
freestream speed of sound 
conservation correction terms in algorithm 
pressure coefficient 

vortex strength expressed in equivalent lift coefficient = 2 f / M ,  
rotor chord length 
prescribed vorticity velocity potential 
identity matrix 
chordwise grid index 
Jacobian of coordinate transform matrix (at the node) 
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chord-normal grid index 
time update operator on left hand side of algorithm 
freestream Mach number 
relative Mach number of equivalent steady coordinate for blade-vortex interaction 

superscript representing current time level 
stream-normal distance in real space, normalized by c 
velocity vector 
radial distance from the vortex, normalized by c 
right side solution vector 
spacial flux terms on right side of algorithm 
streamwise distance in real space, normalized by c 
time in chords traveled = t"a,/c 

chordwise contravariant velocity vector 
chordwise velocity, normalized by uw 
chord-normal contravariant velocity vector 
chord-normal velocity, normalized by aw 
chordwise distance normalized by airfoil chord 
equivalent steady coordinate for BVI 
location of vortex 
chord-normal distance normalized by airfoil chord 
equivalent steady coordinate for BVI 
vortex velocity 
airfoil angle of attack 

(BVI) 

- - p2-r 

time step 
chord-normal distance in computational space 
angle between grid and airfoil surface 
total velocity potential 
perturbation velocity potential 
jump in potential across a branch-cut 
vortex strength 
specific heat ratio 
fluid density normalized by freestream values 

= P / J  
time in computational space (chords traveled) 
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angle between blade and vortex 
chordwise distance in computational space 

1. INTRODUCTION 

Helicopter rotors operating in high-speed flight encounter a number of important 
aerodynamic phenomena. One of the key features of the aerodynamic environment is the 
presence of transonic flow conditions. Transonic flow imposes major limitations on the high 
speed performance of the rotor. These limitations manifest themselves in high vibration 
levels, power divergence, noise, and component fatigue. Traditional integral methods of 
computing rotor aerodynamics [l], are unable to assess the full impact of these transonic 
effects. This is because they rely on linear aerodynamic theories and tabulated airfoil data 
to compute rotor loads. 

Various investigators [2-31 have addressed these limitations by using finite-difference 
methods to compute rotor aerodynamics. These methods provide the capability to compute 
the whole transonic nonlinear flow field about the rotor. An essential difference between 
these nonlinear methods and the linear integral methods is that the linear solutions depend 
only on the blade surface and shear layer conditions. In contrast, the nonlinear solutions 
depend on what occurs in the entire flow field. (This dependence on the field is best seen 
in the integral forms of the flow equations - the Ffowcs- Williams Hawkings equation, 
for instance where all of the nonlinear terms occur in the volume rather than surface 
integrals). For rotors, this field dependence is especially noteworthy because the field is 
frequently occupied with vortices from previous blades. Therefore, an important part of 
rotor finite-difference computations is the means of specifying vortices. The first finite- 
difference scheme to include vortices in the flow field [2] was for a potential solution to 
a high-tip-speed hover problem in which the vortices were specified as edges of potential 
discontinuities. This scheme produced good comparisons with pressure data. Interestingly, 
Ref. [2] also reported an inability to obtain good solutions when the effect of the vortex 
was included only by a blade-surface-inflow specification. The extension of such a vortex 
scheme to forward flight has not yet occurred because of the much greater geometric 
complexity of the vortices. To date, the forward flight computations have relied on vortex- 
induced surface-inflow boundary conditions and have been fairly successful at  high advance 
ratios where the induced flow is a small percentage of the total inflow. Nevertheless, there 
remains a serious question of how best to introduce moving vortices in a grid and thereby 
predict their effects. 

A rotor interacts with a vortex under a wide range of relative orientations. However, 
the essential physics can be illustrated by considering a rectangular blade of infinite aspect 
ratio interacting with an infinite line vortex at an angle 8. Johnson [I] has shown that this 
problem is steady in a coordinate system with its origin traveling with the intersection of 
the blade centerline and the projection of the free vortex on the blade (see Fig. la). The 
steady coordinate system is 
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I x =x 
y' =y - M ,  tan8 

The speed at which the origin travels is a function of the angle 8 .  When 8 = ~ / 2 ,  the 
vortex is perpendicular to the blade and the speed of the interaction point is zero (see 
Fig. lb). For increasing values of 8 ,  the speed of the interaction point increases but the 
problem remains steady. For 8 = T ,  there is no spanwise flow dependence and the problem 
is now 2-D (see Fig. IC). However, the cost of this 2-D simplification is that this problem 
is now intrinsically unsteady because the speed of the interaction point is infinite. The 
blade vortex interaction may then be classified by the two limiting conditions defined by 
8 = ~ / 2  and 8 = T .  The 8 = n/2 condition may be called a low speed interaction (LSI) 
since this is a steady problem even in the original coordinate system. The 8 = condition 
may be called a high speed interaction (HSI) since this is an unsteady problem even in 
the transformed coordinate system. Both the LSI and the HSI represent real interactions 
which can have significant affects on the rotor aerodynamics. The LSI, for instance, is the 
principal type of interaction which occurs during hovering flight. The LSI effects rotor 
power and low harmonic loading. The HSI occurs during high-speed flight and descents 
and effects noise, vibrations, and the higher harmonics of loading. Furthermore the HSI 
contains all of the physics of the LSI therefore the capability to solve for the HSI contains 
the ability to solve the LSI. 

The solution of the HSI problem requires the computation of the time-varying surface 
pressures during the vortex passage. In the present treatment of the problem, the flow 
will be assumed to be inviscid and irrotational. This 2-D problem is a convenient testing 
ground for the vortex modeling schemes that will be required for the full 3-D problem. 
The 2-D BVI problem will be treated using the unsteady, conservative full-potential finite- 
difference scheme originally developed by Steger and Caradonna [4]. This scheme will be 
modified to included various models of the vortex. 

2. FORMULATION OF THE FULL-POTENTIAL ALGORITHM 

The basic finite-difference code used in this paper is described 
unsteady, 2-D, full-potential equation in strong conservation form. 
equation is written in a generalized coordinate system as follows: 

a p  a p u  a p v  -(-) + -(-) + -(-) = o  8.r J a[ J aq J 

with density given by 

in Ref. 5.  It solves the 
The mass conservation 

.- 
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where U and V are the contravariant velocities perpendicular to the q and e directions 
respectively 

and the metric terms A1,A2,A3 are 

All velocities are normalized by am: distances by the airfoil chord length and time by the 
combination (clam). Density is normalized by the freestream value. 

Equation (2) is solved by using first-order backward differencing in time and second- 
order central differencing in space. The temporal density derivative is locally linearized 
about the old time levels in a manner that preserves the conservative form (see Ref. 5 ) .  

The resulting difference equation is solved by approximately factoring it into E and q 
operators. 

where 6e and 6, represent central difference operators in space and the term C* is given by 
Eq. (7). The bracketed term in Eq. (7) represents the temporal conservation correction 
to the algorithm. 

BN-1 + At,-(UN-'6€ t V N - ' 6 , ) ( 9 N  - aN-')]  
P N  

Equation 6 may be written in the following compact form 

(7) 

L = R * + C  
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where L is the update operator and R* is the right hand side residual. A steady 
state AD1 relaxation algorithm can be obtained from Eq. ( 5 )  by omitting the unsteady 
C* term on the right-hand side of the equation. The streamwise flux terms use upwind 
density biasing in regions of supercritical flow to ensure stability of the algorithm. Details 
are given in Ref. 5. 

3. GRID AND BOUNDARY CONDITIONS 

For coding and vortex-modeling simplicity, an orthogonal H mesh is used with the 
current method. The streamlines and potential lines which surround an airfoil in incom- 
pressible flow form such a grid. This type of grid may be computed by means of a complex 
mapping solution. Since the grid is orthogonal, the metric term A1 is identically zero. 
Furthermore, since the grid is steady, the contravariant velocities become 

There are four boundary conditions which are imposed on the flow: (1) the airfoil 
surface, (2) the outer boundary of the grid, (3) the aft face of the grid, and (4) the Kutta 
condition. 

For inviscid flow, the surface boundary condition requires that the flow be tangential 
to the airfoil surface. This can be obtained by setting the contravariant velocity V to 
zero. For a mesh which exactly conforms to the airfoil this leads to 9, = 0. One problem 
with employing this boundary condition is that a new mesh must be generated with every 
new airfoil or airfoil orientation. An alternative to computing a new grid is to use a 
transpiration rather than a “no flow” boundary condition. This approach uses a fixed grid 
which conforms to some convenient profile (e.g., a Joukowski airfoil) which approximates 
the desired profile. The flow must therefore pass through the grid surface at an angle E 

which is the difference in angle between the grid surface and the actual surface (see Fig. 
2). The flow normal to the grid surface @fi, is 

@fi = @stan(€)  

where is the flow velocity tangent to the grid surface. This condition is merely a 
generalization of the usual small-disturbance boundary condition (with no leading edge 
singularity). 

Along the outer boundaries, the flow is required to return to undisturbed conditions. 
Computational outer-boundaries are often so close to the the airfoil surface that this con- 
dition cannot produce an accurate or stable result. For these close-grid boundaries, special 
nonreflective boundary conditions are imposed. However, the current grid boundaries are 
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sufficiently far away (155 chords horizontally , and 80 chords vertically) so that the as- 
sumption of undisturbed flow is valid. The outer boundaries conditions are set with a 
Dirichlet condition 

<p = M,x (11) 

Along the aft face of the mesh, the flow is also required to be undisturbed. However, 
since the present method employs a number of branch cuts (lines of potential discontinuity 
which model vorticity) the potential cannot be easily specified at this boundary. Instead 
freestream conditions are imposed by modifying the outgoing flux along the aft face so 
that p = 1 is insured. Using the Bernoulli condition, an expression for CPt is derived, 

which is used in the flux computation. 

For the lifting conditions, some allowance must be made for a jump in potential across 
a wake-like branch-cut (Kutta condition). This cut extends from the airfoil trailing edge to 
the aft face of the mesh (hence precluding the use of Dirichlet boundary conditions along 
the aft face). The cut is aligned with the mean chord line of the airfoil. In an unsteady 
flow, the jump in potential, I', across the cut must be convected downstream. Using 
the Bernoulli equation and continuity of density across the cut, the following equation 
governing the convection of vorticity from the trailing edge is derived, 

where (U) is the average of the velocities above and below the branch cut. Equation 13 is 
used to determine the value of I' along the branch-cut. 

4. VORTEX MODELS 

In the previous section, an algorithm for solving for the full-potential flow field around 
an airfoil in transonic flow was presented. This algorithm will now be modified to include 
the effect of a 2-D vortex passing near the airfoil. Four models for the vortex will be 
employed :( 1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch- 
cut method, and (4) the split-potential method. These methods may be grouped into two 
categories (see Fig. 3). 

In the first category are the surface-specification methods. The surface-specification 
methods model the effect of the vortex on the airfoil surface only, primarily through an 
imposed inflow velocity on the surface. The angle-of-attack and lifting-surface methods 
fall into this category. The effect of the vortex on the general flow field is not considered 
by these models. These models are completely valid for linear flow fields. 
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For problems characterized by the transonic nonlinearity (that is, with a speed of 
sound which varies throughout the flow field) a surface effect cannot completely model the 
effect of the vortex. Therefore it is necessary to explicitly insert the vortex in the flow 
field. The branch-cut and split-potential models fall into this category. 

The classical 2-D vortex model is be used to define the vortex potential 

I 
I The vortex-induced angle of attack is 

r G = - 6  
27T (14) 

where 6 is the angle subtended by the vortex and the field point. The tangential velocity 
at the field point is 

r Ve = - 
27rr (15) 

The singularity at  r = 0, is the source of numerical instabilities and requires the use of an 
artificial core. In the following studies, the model developed by Scully [6] is used. That is 

r2 1 r Vo=-[ 
27~r r2 -I- a2 

where a is the vortex core radius. 

The vortex is moved through the computational grid by computing the flow velocity 
at  the vortex and integrating over the current time-step to find the update location 

Xy+'  = X N  V -k UvAtN 
Y,"" =Y," + VvAtN 

The vortex convection velocities Uv and Vu can be determined by three different methods: 
(1) a priori specification, (2) interpolation of local flow velocities, and (3) the Biot-Savart 
law. For the present paper, the vortex is convected at at the free stream speed. 

The angle-of-attack method is the simplest possible model of the effect of a vortex on 
an airfoil. Equation 16 is used to compute the velocity at  the airfoil quarter chord. With 
this velocity a vortex-induced angle of attack is computed (see Fig. 4a). The velocity 
perpendicular to the chord line is (assuming the leading edge to be at x=O) 
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This angle is added to the airfoil angle of attack. The potential field is then computed as 
before. The angle of attack is updated at each time step as the vortex moves by the airfoil. 

The lifting-surface method is the most general form of the surface-specification models. 
As with the angle-of-attack method, equation 16 is used to compute the induced velocity at 
the airfoil surface (see Fig. 4b). However, unlike the angle-of-attack method, the velocity 
is allowed to vary over the surface. This eliminates the major shortcoming of the angle- 
of-attack method, which is sensitivity to miss distance. For the lifting-surface method, 
equation 18 is modified 

With this change, the computation proceeds as before. 

Caradonna [7] was the first to use an explicit-method vortex model with a finite- 
difference rotor computation. The branch-cut method, which he used for steady 3-D flows 
is based upon the known potential solution for a 2-D vortex, (Eq. 14). This potential is 
implemented by means of a branch cut which extends from the center of the vortex to the 
aft face of the computational grid (see Fig. 4c). A jump in potential equal to I? is imposed 
across the cut. 

At first it would seem that the branch-cut method is well suited to a potential finite- 
difference algorithm. However, problems arise in unsteady problems whenever the vortex 
is moved. As the edge of the cut moves past a node, an abrupt change in the local potential 
occurs. This sharp change gives rise to spurious waves which affect the entire flow field. 
The problem can be solved by spreading the edge of the branch-cut - which is achieved 
by distributing vorticity on the various nodes which surround the vortex center. The 
simplest distribution involves the use of the nearest four grid points. The vortex may be 
modeled by any arbitrary distribution. Stremel [8], uses a method in which the vortex 
is modeled with an area weighted distribution of vorticity. The author [5 ]  has used a 
parabolic distribution of vorticity in the horizontal direction coupled with a vertical linear 
variation. For the present study the distribution is weighted so that the “center of gravity” 
of the vorticity represents the center of the vortex. With four grid points, this distribution 
will uniquely determine the vorticity distribution. Increasing the number of points would 
require an arbitrary distribution to  be imposed upon the vorticity. With this modification, 
the vortex may be moved from cell to cell smoothly thereby reducing (not eliminating) 
the spurious waves. The effect of distributing the branch cuts is to create an artificial core 
for the vortex. The efficacy of the “core” is dependent upon the distribution of the nodes 
which are in the vicinity of the vortex. Since each of the separate branch cuts represents 
a separate subvortex and each subvortex has its own singular point, the ”core” is very 
sensitive to the grid geometry. 

Another problem associated with moving the vortex is computing the vortex- 
convection velocity. Interpolation of the local velocities near the vortex is the only available 
means of computing the vortex velocity directly. The interpolation is complicated by the 
fact that the vortex creates such a large local disturbance, that it is difficult to separate 
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the effect of the flow field on the vortex from the effect of the vortex on the flow field. 
One of the major shortcomings of the branch-cut method is that there is no good way to 
separate the effects because the branch-cut contains the combined potential of the vortex, 
the free stream, and the airfoil. The vortex induced velocities dominate the flow near the 
vortex and make an accurate interpolation very difficult. The velocity at  the vortex may 
be approximated by using the Biot-Savart law in conjunction with the lift on the airfoil. 
In this approach, equation 16 is essentially used in "reverse" with I' being the jump in 
potential at  the airfoil trailing edge( and hence a measure of the airfoil lift). 

Another feature of the branch-cut method is that it depends upon a difference equation 
to implement the effect of the vortex. That is, the vortex effect is specified entirely by 
the potential jump, which is represented by the differencing across the branch-cut. The 
accuracy of this difference is also dependent upon the local grid geometry. It therefore 
follows that the accuracy of the vortex model will change as the vortex moves through 
the mesh. The distribution of the vorticity on the mesh further distorts the model by 
increasing the mesh dependence. A successful branch-cut model is therefore a compromise 
between an effective core model and an accurate vortex model. 

An alternative to the branch-cut method is the split potential-method (see Fig 4d ). 
In this approach, the velocity is assumed to be a combination of a known velocity and a 
perturbation velocity (see Ref. 12 ) 

where VG is the known velocity field and V+ is a perturbation velocity, which need not 
be small. The total potential for the blade/vortex problem can be split between the 
perturbation potential (associated with the airfoil) and the potential, G, which describes 
the vortex velocity field, 

Any potential algorithm may be modified in this way to include the effects of a known 
velocity component and a perturbation velocity. Furthermore, the potential G need not 
represent a vortex, but can represent any flow field which independently satisfies the PO- 
tential equation. When equation 22 is applied to equation 6, the following equation results: 

+C* ( p N ,  pN-1, p, tp-, p - 2 ,  pN-1) 

+ C * ( G ~ , G ~ - ~ ,  GN-2, p N - 7  

The Bernoulli equation undergoes a similar modification 

(23) 
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= ~ ( 4 ”  + GN)  (24) 

The left side of equation 23 is identical to the original algorithm. The right side contains the 
additional spatial and temporal gradient terms in G, including the update operator L(G). 
Implementation of equation 23 has proven to be a challenge to several researchers,[3,9,10] 
who have sought to simplify the equation. The principal focus of these efforts has been 
to eliminate the temporal gradient terms in G. These terms pose a particular problem 
since they involve the potential G explicitly. Computing this term requires the tracking 
of a branch cut through the flow in effect reducing the split-potential to a branch-cut 
model. This will be particularly difficult for the complex geometry of the full 3-D problem. 
Furthermore, it is advantageous to minimize the computational requirements as much as 
possible. McCroskey [9], has shown (for a small disturbance formulation) that L(G), and 
AGN can be eliminated since the vortex potential (equation 14) is a solution to 

LAG = 0. (25) 

Therefore, a “small disturbance version” of 21 would be 

since C* terms are not present in a small disturbance form. 

Sankar (lo] restricted the solution to his algorithm to a so called “weak split-potential” 
approach in which the temporal and most of the spatial gradient terms in G are simply 
dropped (this is essentialy the lifting- surface method). 

The present method is neither a small disturbance or “weak split-potential” form. 
Even so the algorithm can be simplified using an method suggested by Strawn and pre- 
sented here first. Begin by recasting equation 23 

N+1 L ( ~ ~ , A Q  ) = R * ( P ~ , ~ ~  + cN) 
4 N ,  4 N - l , 4 N - 2  , PN-’) +C*(P , P  , 

+ c * ( G ~ , G ~ - - ~ ,  ~ ~ - ~ , p N - l )  

+A+N + AGN 

N N-1 

(27) 

The update operator, L, has been recombined to  include the total potential. The temporal- 
conservation correction term C* in G has been retained, since there is no way to effectively 
separate the G and 4 parts of the density. The time-derivative terms are obtained using 
the chain rule: 
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This value may be determined most easily in an axes system fixed to the vortex. In this 
system, the vortex is fixed and the airfoil to which the grid is attached moves past it. In 
this system 

therefore, 

AG = A t N G ,  (30) 

Use of equation 30 is necessary because if the term G itself were used, the branch cut 
associated with it would have to be tracked which would lead to a branch-cut-type method. 

5. COMPARISON OF VORTEX MODELS 

A straightforward way of comparing the four vortex models is to compare the induced 
velocity produced on the airfoil by each model. Figure 5 presents a series of such compar- 
isons for a vortex located at the airfoil leading edge and at selected vertical distances. 

Since the angle-of-attack, lifting-surface and split-potential models all make use of 
the same vortex-velocity equation, the results for these models are similar. The difference 
between the angle-of-attack model and the others is that it imposes a single representative 
velocity (namely the quarter-chord value) over the entire chord. This model is based on 
the assumption that the airfoil may be treated as a single point. This model is valid 
for airfoil/vortex distances greater than about two chords. Between two-chords and one- 
chord distance, the velocity variation over the chord becomes significant. At less than one 
chord, the induced velocity variation is large and the angle-of-attack method breaks down 
entirely. The lifting-surface and split-potential models both require the distribution of 
vortex induced velocity a t  the airfoil surface. Thus the lifting-surface model is a degenerate 
form of the split-potential method with the induced velocity effect restricted to the airfoil 
surface. 

Comparison of the four vortex-modeling methods will be made with the help of exper- 
imental data. Recently, Caradonna et al. [ll] presented experimental results for a rotor 
interacting with a vortex. The rotor had two blades with a constant 0012 airfoil section. 
The blades were untwisted and the rotor had a teetering hub. The rotor aspect ratio was 
7. A vortex was generated upstream of the rotor by a fixed, constant-section, NACA 0015 
wing ( Fig. 6 depicts the experimental setup). When the rotor blade is at an azimuth 
angle of 180°, a HSI occurs. Pressure at ten locations on the airfoil surface were measured 
and these data were presented as a function of time (vortex location) and space (airfoil 
chord). 
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The data were collected for several rotor tip speeds and vortex locations. Two of 
these conditions will be used as reference data in comparing the vortex models. The first 
condition is for a subcritical flow M ,  = 0.536, and a vertical miss distance of Y,= -0.433. 
The second case is for a critical flow, M, = 0.714, and the same vertical miss distance. 

There are two factors which will compromise the correlation. First, the rotor has a 
low aspect ratio. Since the present method is strictly 2-D, one should expect to see a 
higher pressure predicted than measured due to aspect ratio effects. The second factor is 
the rotational velocity of the rotor. The measurements used in the comparison were made 
at an azimuth location of 180”. However, the effect of the vortex on the blade begins much 
earlier. Therefore the blade is experiencing a steadily changing freestream flow modified 
by the vortex. The variable free stream is not modeled by the current method. For the 
subcritical case, this will not pose a problem since unsteady effects are small at low Mach 
numbers. However, the critical case is much more sensitive to this effect. The rotor is 
experiencing a high transonic speed at the 90” azimuth location which decreases as the 
blade moves forward. As the speed decreases, the shocks on the airfoil surface begin to 
collapse. The vortex is encountered during this collapsing process. The computation of this 
flow field requires a three-dimensional model complete with an accurate unsteady-shock 
model. This is beyond the capability of the current method. 

Figure 7a shows a comparison of lift vs vortex location for the four vortex models 
for the subcritical case. The four methods show little difference in the initial-condition 
solution. As the vortex approaches, the curves begin to separate, reflecting the effect of 
the various methods on the flow field solution. When the vortex is between two and three 
chords upstream, the separation of the curves becomes large. This region can therefore be 
considered the outer boundary of the close interaction. The curves continue to separate 
until they reach a maximum difference when the vortex is at the airfoil leading edge. 
During the interaction phase, the methods display several interesting features. The angle- 
of-attack method predicts a rapid (almost instantaneous) change in lift as the vortex passes 
the quarter-chord. This occures because the airfoil undergoes an abrupt change in angle of 
attack from negative to positive at this point, in effect inverting the curve. An interesting 
feature of the branch-cut method is that during the interaction phase it predicts a small 
“spike” in the loading curve. This occurs when the vortex is in the densest part of the 
grid and is caused by the locally high velocities predicted by this method. This “spike” 
increases in size as the Mach number increases. For a very strong interaction (M=0.8, 
y, = -0.25 and CZ, = 0.4), this “spike” leads to an instability in the algorithm which 
destroys the solution. The split potential and lifting-surface methods are in agreement 
overall even though they are somewhat different during the closest part of the interaction. 
Neither of these methods show any unusual features in their predicted loading histories. 

Figure 7b presents the variation of lower-surface leading-edge pressure with vortex 
location for the four methods. Here the difference between the lifting-surface and split- 
potential methods is more apparent. The “spike” in the branch-cut loading curve is also 
more apparent than in the integrated data. This figure highlights the change in pressure 
on the airfoil caused by the sharp change in lift predicted by the angle-of-attack method. 
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Figure 7c presents comparisons of measured and computed data for each of the meth- 
ods. These comparisons must be considered qualitatively valid because of the aspect ratio 
and unsteady rotational flow field of the experiment. The split-potential, lifting-surface, 
and branch-cut methods all show qualitatively good comparisons but differ in detail. The 
angle-of-attack method is clearly not accurate for this condition this is due to the sharp 
change in lift predicted by the model which does not occur in the experiment. 

A more interesting comparison is for a flow condition which is just below critical, that 
is a flow condition which if undisturbed would remain subcritical. The introduction of a 
vortex in such a flow field would be expected to drive the flow into a supercritical state. 
A 0012 airfoil at CY = 0” and M=0.714 experiences this type of flow. 

Figure 8a presents a comparison of lift vs. vortex location for each of the models at this 
critical flow condition. Inspection of this figure shows qualitatively the same comparison 
as the subcritical case. The angle-of-attack methods predicts a sharp “lift inversion” as 
before. The branch-cut method predicts a “spike” in the loading curve of increased size 
at this higher Mach number. The split-potential and lifting-surface methods both predict 
smooth curves. 

Figure 8b present the pressure time-histories at the airfoil leading edge. The angle-of 
attack and lifting surface methods both predict pressure histories which are similar to 
those at  the lower Mach number. However, the branch-cut and split-potential curves are 
markedly different. Both of these methods predict the presence of shock waves although 
this is obscured in’ the branch-cut method by the presence of the “spike”. The presence of 
the shock wave in these models is more easily seen in the comparison of the measured and 
computed data (Fig. 8c ). The lifting-surface and angle-of- attack methods not predict 
shocks. 

The comparisons shown in Figs 8b and 8c show that all four models produce quali- 
tatively similar results. The split-potential and lifting-surface methods produce the most 
accurate integrated-loads curves. The angle-of-attack and branch-cut methods both gen- 
erate spurious spikes in the loading curve. Comparison of the pressures predicted with 
the experiment show that the explicit models accurately predict the onset of critical flow 
conditions. Numerous computational experiments have indicated that the split-potential 
method is the most robust of these two methods. It also allows for more control of the 
vortex modeling because it models the vortex as a specified velocity field. Furthermore, 
the method is not restricted to modeling vortices and can be used to predict the effect of 
any flow field which is described by a known, irrotational, potential function. Because of 
this versatility and robustness, the author recommends this method. 

One of the key unanswered questions of the split-potential model is the effect of 
temporal-difference terms in G ,  (C*,L,AG) on the solution (Eq. 27). These terms 
can have a serious impact on a 3-D computation because of the geometric complexity of 
the wake and the difficulty of computing Gt for each wake element. Figure 9a shows a 
comparison of the effects of these terms on the integrated lift curve for a subcritical flow 
condition. It is obvious that there is little difference between the two curves. However, 
this flow condition is low-speed and the vortex is not very close to the airfoil (a “weak” 
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interaction). Figure 9b shows a similar comparison for a close supercritical interaction ( a 
“strong” interaction). Here the effect of the terms is much more apparent. In particular, 
the Gt terms show a marked effect during the interaction phase and the departure phase. 
Notice, especially the region in which the slope of the curve undergoes a rapid change. 
This corresponds to the vortex passing through the airfoil shock. The combination of 
these velocities (shock and vortex) causes high pressures on the airfoil surface which are 
reflected in the loading curve. In summary, the Gt terms seem to have little effect on the 
solution except for strong-interaction cases. 

6. CONCLUSIONS 

A study of the full-potential modeling of a blade-vortex interaction has been con- 
ducted. The primary goal of this study has been to investigate the effectiveness of the 
various methods of modeling the vortex. The problem was studied within the context of a 
2-dimensional model problem, which represents one of the limiting types of blade-vortex 
interactions. The model problem restricts the interaction to that of an infinite wing with 
an infinite-line vortex moving parallel to its leading edge. This problem provides a con- 
venient testing ground for the various methods of modeling the vortex while retaining the 
essential physics of the full 3-D interaction. The flow field can be assumed to be inviscid, 
irrotational, unsteady, and, in general, transonic. Four different models of the vortex were 
used. These four models have been compared to each other and to experimental data to 
determine their relative merits. The following comparisons were made : (a) generated 
velocity fields, (b) a subcritical interaction, and (c) a critical interaction. The subcritical 
and critical interactions are also compared with experimentally generated results. 

As a result of these comparisons the following conclusions have been reached: 

(a) Only the explicit models predict the presence of shock waves for the critical inter- 

(b) The branch-cut method shows a strong sensitivity to the mesh configuration which 
leads to spurious waves in the solution, especially for transonic flow cases. 

(c) The lifting-surface method compares well with the split-potential method, espe- 
cially for subcritical flow. This method has proven to be useful in 3-D problems to specify 
far-field vortex effects. 

act ion. 

(d) The split-potential method is the most versatile and robust method. The tem- 
poral gradient terms in the split-potential method must be retained to predict “strong” 
interactions. This may cause a slight increase in computing time for 3-D problems, which 
can be offset by using the lifting surface method for vortices far from the blade. 

The primary goal of this study has been to examine the effect of the vortex model 
on the computation of the BVI problem. The split-potential model has proven to be 
the most versatile and robust method of the currently available techniques. The lifting- 
surface method has been shown to be a useful approximation to the split-potential method 
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especially for far-field vortex specifications. The next logical step in this study is to extend 
these results to the 3-D rotor problem. In the process of accomplishing this, the method 
should be coupled with an existing, comprehensive helicopter method, similar to that used 
by Strawn and Tung [13]. The 3-D model should include a complete vortex wake model 
using the split-potential method. Another interesting application of the split- potential 
technique would be to make use of it to model linear portions of the flow field (e. g. the 
rotational flow field). 

The modeling of the BVI will continue to be a key problem in helicopter aerodynamics 
because it is a major determinant of vibratory loading and noise. This study has analyzed 
the interaction in two dimensions and used this model problem to find the best means 
of determining BVI loading within the context of a finite difference computation. The 
extension to three dimensions should build directly on this work. Beyond this point, 
the greatest problem will be to find an efficient and accurate way to predict the three 
dimensional structure of the rotor wake. 
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Fig. la. The interaction of an infinite aspect ratio blade with an infinite line vortex. 
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Fig. lb.  The low speed interaction (LSI) between a rotor and a vortex. 
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Fig. IC. The high speed interaction (HSI) between a rotor and a vortex. 
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Fig. 2. The transpiration boundary condition at the airfoil surface. 
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Fig. 3. Principal vortex models. 

Fig. 4a. Angle-of-attack vortex model. 
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(b) 

Fig. 4b. Lifting-surface vortex model. 

Fig. 4c. Branch-cut vortex model. 

Fig. 4d. Split-potential vortex model. 
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Fig. 6. Experimental measurment of blade-vortex interaction. 
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Fig. 7a. Comparison of airfoil lift variation with vortex location for a variety of vortex 
models, subcritical. 
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Fig. 7b. Variation of airfoil pressure with vortex location for a variety of vortex 
models, subcritical. 
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Fig. 8a. Comparison of airfoil lift variation with vortex location for a variety of vortex 
models, critical. 
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Fig. 8b. Variation of airfoil pressure with vortex location for a variety of vortex 
models, critical. 
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